The Zincblende Lattice and BZ

..... valid for GaAs, ZnSe, InSb,

Lattice

Basis of atoms

(1.) Brillouin zone

Band Structures by the LCAO Method

Starting point: bonds are formed from atomic orbitals. Only s and p, and sometimes d orbitals are relevant for semiconductors

Atomic orbital energies split.

 σ and π molecular orbitals are formed.

Band Structures by the LCAO Method

Split levels further broaden by nearest and next-nearest neighbour interaction and form

k-dependent engergy bands in the BZ !

The Bloch waves keep (now \vec{k} -dependent) mixed atomic orbital characters, with reminescence to the atomic orbitals of the atoms!

Partial DOS by the LCAO Method

- > The LCAO approach yields automatically atomic orbital characters χ^{ℓ} for each Bloch wave!
- > Otherwise, projection of the Bloch waves onto the Löwdin orbitals yields χ^{ℓ} as well!
- > Weighting each Bloch wave by the χ^{ℓ} yields **partial densities** of states for the band structure of the solid

Valence Charge Density

Contour plots of the valence charge density in Zincblende semiconductors

GaAs $\rho(\vec{r}) = e \sum_{n=1}^{4}$

$$\vec{z}$$
) = e $\sum_{n=1}^{r}\sum_{\vec{k}\in B.Z.} \left| u_{n,\vec{k}}(\vec{r}) \right|$

ZnSe

Si

Chelikowsky and Cohen