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and get the sheet resistance
from the average by
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with the weakly warying van der Pauw function f(Q) of the order of 1.

Transport Measuremtents in the van der Pauw Geometry

required: sheet system of (in many cases unknown) thickness d
with homogeneous charge carrier density and mobility



yields an implicit
equation for f(Q) that
is easyly solved
iteratively and gives
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into van der Pauw‘s theorem

= 
R1

R2

Note: 
� Symmetry of R1 �� R2 guarantees f(1/Q) ) f(Q
� f(1)=1
� f drops to 0,7 only even when R1 = 10 R2 !

Transport Measuremtents: the van der Pauw Function



Historic Excursion: Philips Research Labs 1958



measure the transverse resistance
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or measure transverse resistance
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Measuring the Hall Effect in the van der Pauw Geometry
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with and without magnetic field B ┴ sheet.

B

The experimental Hall constant     is then

For unipolar transport, i.e.only electrons or only holes with density c:
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with the charge q= +/-e of the charge carriers and the Hall scattering factor r 
of the order of 1
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By convention, the Hall constant RH is defined as H HR R d= ⋅ɶ
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areal, i.e. depth-integrated charge carrier density, [...] = cm -2 !
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The inelasting scattering time of electrons and holes always follows a Poisson
statistics with distribution function .( ) ( )t1f t expτ τ τ= −

The parameter τ(v2)=τ(E) in general depends on the kinetic energy of the charge carriers.

The Hall Scattering Factor
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The Hall scattering factor r is

where < > stands for
averaging over the energy
distribution of the charge
carriers.

In most cases τ(E) follows a 
power law function where the
exponent is determinded by
the dominating scattering
mechanism.  

For most cases -0,5 < s < 1,5 and  thus 1< r < 2, i.e. the scattering mechanism
has only a weak influence on the determination of the Hall mobilities!
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Combining Hall Effect and Conductivity Measurement

For unipolar transport, i.e.only electrons or only holes with density c:
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For unipolar transport, the combination of conductivity
measurement and Hall effect gives sign, areal density and 
mobility of the charge carriers (up to r~1) !

S

1
e (c d) e c

R
σ µ µ= = ⋅ =
□ □

sheet charge carrier density
[cm-2]

and

H
H

S

R
R sign(q) r

R
σ µ⋅ = = ⋅ ⋅
□

ɶ
ɶ yields sign and mobility of the c.c.

(up to r~1)
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⋅□ ɶ yields areal c.c. density (up to r~1)

Note:
� Conductivity and Hall effect are insensitive w.r.t. the sample thickness d
� Only when d is known independently, c and σ can be evaluated from c□ and σ□ . 



Combining Hall Effect and Conductivity Measurement

For bipolar transport, i.e.only electrons and holes with density:
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Still not conclusive without further input, except for or .
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(up to r~1)

In general, two data for 4 unknown (+ r)  � not conclusive!

For the special case re=rh and n□=p□=c□:
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yields areal density times sum of the mobililties

yields the difference of the mobililties
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