Transport Measuremtents in the van der Pauw Geometry

required: sheet system of (in many cases unknown) thickness d
with homogeneous charge carrier density and mobility
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with the weakly warying van der Pauw function f(Q) of the order of 1.



Transport Measuremtents: the van der Pauw Function
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ON LAMELLAE OF ARBITRARY SHAPE'

Resistivity and Hall-coefficient measurements at
different temperatures play an important part in
research on semiconductors, such as germanium and
silicon '), Tor it is from these quantities that the
muhility and concentration of the charge earriers
are found,

Such measurements are commonly carried out
with a test bar as illustrated in fig. 1. The resistivity
iz found dircetly from the potential differenee and
the distanee between the contacts O and P, the
current £ and the dimensions of the bar, Toe detee-
mine the all coefficient the bar is subjected to a
magnetie field B applied at right angles to the direes
tivn of the current and to the line connecting the
dinmetrically opposite contacts @ and @, From the
potential difference thus produced between these
latter contacts the Hall cocfiicient is derived, (The
relation between the Hall coefficient and the change
in clectric potential distribution due to a magnetic
field will be explained prescently.)
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Fig. 1. Classical form of sample nsed for resistivity and Halle
coeflicient measorements. The test bar i provided with corrent
conticts M oand N and voltoge contacts 0, 2, (¢ and R The
foarth valtage contact B serves for check measorements,

In measurements perfermed at low temperatures
<= g in liguid nitrogen — point contacts possess
resistances of the order of megohms, in consequence
of which the voltages cannot be determined with
sufficient aecuracy. In such cages “bridge-shaped™
somples are used as illustrated in fig, 2, The voltage
and current contacts here have a relatively large
surface arca, and henee the contact resistances are
low.

The methods referred to are based an the fact
that the geometry of the sample ecnsures 8 s,i.mp].i:
pattern of virtually parallel current stream-lines.
Formulae have been devised to correct for the devia-
tivn fram parallelizm in fig. 2, cavsed by the finite
width of the arms. A drawback of the bridge-shaped

L. Kittel, Introduction to solid state physies,
jon, Wiley, New York 1966, Chaprer 13, p. 347
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sample is that it s rather difficult to make, having
to be cut out of the brittle semiconductor material
with an ultrasonic toal. There is therefore a considers
able risk of breakage, particularly when the arms

are made narrow,
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Flg. 2. The bridge-type sample, which ks provided with relative-
ly large sontact facos 1o reduce contact besistances, This form
is of special importance in messurements st low Lemperntures.

In the following we shall describe a method of
performing resistivity and Hall-coeflicient meas.
urements an lamellac of arbitrary shape 7). The
lamelln must not, however, contain any {geomiet-
rical) holes,

New method of measuring resistivity

We take a Hat lamella, completely, free of hales,
and provide it with four small contacts, M, ¥, 0
and F, at arbitrary places on the periphery { fig. 3).
We apply a current iy, o comtact M and take it
off at contact N. We measure the potential difference
Fp— Fyand define:

Rarzior = E:N:

Analogously we define:

Bropm = ———
. Exg
The new methed of measurement is based on the
theorem  that, between Ry, and Ry there
exizts the simple relation:
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where d iz the thickness of the lamella and 5 the
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This expression represents a relation Between f and =/,
and hence also between § and Ruxor/Fxopear (sme 53 The
relntion is shown graphically in fig- 5. By re-writing (B) to

+ give p and substitating for x, and sy from (5 we find formula

().
Method of measoring the Hall cmfﬁci&nk\

The Hall cocfficient, tes, can be measured oan
an arbitrary lamella a= in fig. 3. We then apply the
current to one of the contacts, say M, and take it
off at the contact following the suceceding one, Le.
in our case at {0 We mensure Ry, o after which
we set up an uniform magnetic induetion B at right
angles to the surface of the lamella, This changes
1 Rypgmp. We shall now
t Ky and show that it i=

Rappvp by an mmour
denate the Hall coefficis
miven by:

Ry = ;; ARyares - - (9)

provided that:

w) the contacts are sufficiently small,

b} the contacts are on the perip]n-r}'.

) the lamella i of uniform thickness and free of
holes, -

The validity of formula (¥} depends on the disui-
bution of current stream-lines not changing when
the magnetic field is applied. With samples of the
classival shape of figs, 1 and 2, where the current
stream-lines are always parallel to the edges of the
sample, there is evidently no change. From the
properties of the vector field representing the current
density it follows that the same also applies to
lamellae of arhitrary ehape, provided the above
eonditions are satisfied 2).

Under the magnetic induction D, the charge
carriers, with charge g, are subjected to a force
perpendicular to the stream-lines and perpendicolar
o the lines of magnetic nduction. The magnitade
of this foree is F = quB, where o is the velocity
of the charge carriers. Between v, the concentration
n of the charge earricrs and the current density J
there exists the relation v == J/ng. Dividing the
force exerted on the charge carriers by their charge
g, we see that the effect of the magnetic field i
cquivalent to an apparent electric field Ey, the
Hall electrie field, for which we can write #):

1
E|!= —JB.
nyg

3} The proof of this statement is also indicated in the paper

quoted under 7). .
This furmtla is not entirely exact hecawse, apart from ther
ordered mation with vebocity e, the elecirons abo move
randomly aswing to thermal agitati

-—

tation. More precise calvila-
wini shows, bowever, that the formula given here is & good
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Ey s proportienal to J and to By the proportionalivy

constant (= 1/mg) i= called the Hall coofficient Ry
Since g is known, one can caleulate from Hy the

cancentration n of the charge carricrs,

The fact that the current stream-lings are not
affeeted by the maguetic field implies that after
application  of  the magnetic ficld the electric
field is no longer in the same direction as the cur-
. but has acquired o transverse

rent stroeame
CLELHEn T -I"Il. which 0&ut‘lf}' compensates the

Taryn

Fig. & The resaltant of the electrical fiekl-strength E and the
Hall fiehd-strength Ey | ol 1l carrent demsity

in di lar and parallel 1o
nent Ey which in mag-

apparent Hall electric field Ey { fis, &), The change
M Ve V) in the potential difference between
P and iz therefore given by integrating F from P
ever a path orthogonal to the current stream-lines
to N across the lamella { fig. %), and thenee i]lrl'lg
the periphery —- it along a streameline — from
N to N. The last portion of the path makes no
contribution to the integral; hence

N b
AVe—F) = I[ Eods =R, B J Jds =Ry R

r P

Fatin
o

where d is again the thicknese of the lamella. This
expression leads direetly 1o (%)

[

Fig. 9. To caleolate by how much the potentinl difference
between points I and N changes when o magnetic field s
applied nt right-angles 1o the plane of the umrle. the trans-
verse electric field Ey prodused by the magnetic field is integrated
abong the path s which rone from P, orthogonal to the current.
stream-lines, 1o N and thence along the periphery from N°
o N = .



Measuring the Hall Effect in the van der Pauw Geometry

measure the transverse resistance
U

—_pT — ¥YBD
RAC,BD - Rl - |
AC

Or measure transverse resistance
Uca

RBD,CA = R; = I
BD
with and without magnetic field B - sheet.

—— The experimental Hall constant IiH IS then
5 - AU R; (B)-R; (B=0)

— BD — AU, _ R;(B)—R;(B:O)
" BO,, B BO,, B

By convention, the Hall constant R, is defined as R, = ﬁQH Ldl

For unipolar transport, i.e.only electrons or only holes with density c:
& r r

H g (cLdl) - gc,«—— areal, i.e. depth-integrated charge carrier density, [...] = cm 2!

RH =— with the charge g= +/-e of the charge carriers and the Hall scattering factor r
qle of the order of 1



The Hall Scattering Factor

The inelasting scattering time of electrons and holes always follows a Poisson
statistics with distribution function f_(t)=2exp(-+1)

The parameter 1(v3)=1(E) in general depends on the kinetic energy of the charge carriers.

3

r(E)=r1,{E/E,)

The Hall scattering factor r is

2.5

r=—+t=t

where < > stands for
averaging over the energy
distribution of the charge
carriers.

Hall scattering factor r

In most cases T(E) follows a 15

power law function where the
exponent is determinded by N

the dominating scattering T~ |

mechanism.
0.5 0 0.5 1 1.5

Exponent s

For most cases -0,5 <s < 1,5and thus 1<r < 2, i.e. the scattering mechanism
has only a weak influence on the determination of the Hall mobilities!




Combining Hall Effect and Conductivity Measurement

For unipolar transport, i.e.only electrons or only holes with density c:

1 5 —
—=e(cld) y=ec, u and Ry=—+
sheet charge carriet density <
[cm?]

g, =

yields areal c.c. density (up to r~1)

—— R, @ =% =dggn(q) Lu yields sign and mobility of the c.c.

m]
S (up to r~1)

For unipolar transport, the combination of conductivity
—_— measurement and Hall effect gives sign, areal density and
mobility of the charge carriers (up to r~1) !

Note:
» Conductivity and Hall effect are insensitive w.r.t. the sample thickness d
» Only when d is known independently, ¢ and o can be evaluated from c_and o_ .



Combining Hall Effect and Conductivity Measurement

For bipolar transport, i.e.only electrons and holes with density:

1 ~ r P, — M°rn
Jqu_:e(:uen'l':uhp) and RH:,Uh P ~ Ko e o
S e(luhpn - I['Ien\:)
— In general, two data for 4 unknown (+ r) - not conclusive!

For the special case r,=r, and n_=p_=c_:

1 s _ U
g, =—=ecC + and R, = h e
o RS o (/’Ie ﬂh) H eCD /'Ih +Il'le
—— (et t4) T eR. yields areal density times sum of the mobililties
S
» - I~QH - . . —_—
— Rylo,=—= (,Uh ‘,Ue) f  vyields the difference of the mobililties
S (up to r~1)

— Sitill not conclusive without further input, except for 4, < 4, orH, < U,



